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The method of induction melting in a cold crucible (CCIM), originally developed for 
refractory oxides [I-3], is being used more and more in the production of high-melting di- 
electrics. An important stage in CCIM (preceding crystallization) is the period when a 
steady-state thermal regime is maintained. Here, heat losses from the melt are offset by 
absorption of energy from the high-frequency field. The temperature of the melt and the 
width of the solid-phase layer are determined from the heat balance condition. The subject 
of the thermal stability of the phase boundary was investigated in [i], while qualitative 
considerations were addressed in [4]. The given system obviously has two stable states in 
an HF field: i) a cold, nonabsorbent solid phase; 2) the melt, the high temperature of which 
is maintained by HF absorption. Along with the stable regime, there is an unstable regime 
with a melt of smaller radius. The union of the stable and unstable solutions yields the 
critical conditions for existence of the melt. 

Here, we quantitatively study the stability of the melt and determine the critical 
conditions from the simultaneous solution of thermal and electrodynamic problems (in con- 
trast to [5-7]). The characteristics of the steady-state regimes are obtained in relation 
to parameters assigned as part of the conditions of the experiment (the voltage and frequency 
of the HF generator, the diameter of the crucible, etc.). Stability is studied in a quasi- 
steady approximation. 

i. Formulation of the Problem. We used the model shown in Fig. i to analyze the ther- 
mal stability of the melt in the HF field. The infinite conducting melt i is coaxial with 
the infinite solenoid 4 (induction coil). A layer of solid phase 2 (crust) exists between 
the melt and the cooled wall of the crucible 3, which is transparent with respect to the 
HF field. The Stefan condition below is satisfied at the phase boundary [8] 

pL(da/d t )  = q+ - -  q . ,  ( 1 . 1 )  

where p is the density of the dielectric; L is the heat of phase transformation; a is the 
radius of melt; t is time; q+ and q_ are the heat flows at the phase boundary from the direc- 
tion of the melt and the solid phase, respectively. 

In the steady-state regime of CCIM, the phase boundary is stationary [(da/dt) = 0]. Its 
position is determined from the solution of the equation q+(a) - q_(a) = 0. The values of 
the fluxes q+ and q_ are calculated from the heat conduction equation. 

The heat conduction equation, describing the thermal state of the dielectric in the 
steady-state regime, has the following form in a cylindrical coordinate system 

~ f~aT / r dr ~ ~r] + 0 ( r ) =  0. ( 1 . 2 )  

H e r e ,  r i s  t h e  r u n n i n g  r a d i u s ;  T i s  t h e  t e m p e r a t u r e ;  ~ i s  t h e  t h e r m a l  c o n d u c t i v i t y ;  Q i s  a 
f u n c t i o n  o f  t h e  s o u r c e  o f  t h e  h e a t  r e l e a s e .  

The b o u n d a r y  c o n d i t i o n s  f o r  Eq. ( 1 . 2 ) :  

r = 0, d T / d r  = 0 ; r  = b, T = To ( 1 . 3 )  

[b i s  t h e  r a d i u s  o f  t h e  c r u c i b l e  and T O i s  t h e  t e m p e r a t u r e  of  t h e  c r u c i b l e  ( t h e  l a t t e r  i s  
k e p t  c o n s t a n t ) ] .  

2.  H e a t i n g  C a p a c i t y  i n  t h e  D i e l e c t r i c .  To c a l c u l a t e  t h e  s o u r c e  f u n c t i o n  Q ( r ) ,  we w i l l  
u s e  t h e  mode l  o f  an i n f i n i t e  c o n d u c t i n g  c y l i n d e r  w h i c h  i s  p o s i t i o n e d  c o a x i a l l y  w i t h  t h e  
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infinite solenoid shown in Fig. i. The electrical conductivity of the crust is assumed to be 
zero, so that no heat is released in the solid phase of the dielectie. 

The heating capacity per unit volume of the melt 

Q(r) = (z~)I](r)12, ( 2 . 1 )  

where o is the electrical conductivity of the melt; j is the current density in the melt. 
It depends on the distribution of the magnetic field H(r) in the dielectric 

](r) = 7 (c/4a) [OH(r)/Or I ( 2 . 2 )  

(c  i s  t h e  s p e e d  o f  l i g h t ) .  The d i s t r i b u t i o n  o f  t h e  f i e l d  H ( r )  i s  known ( s e e  [ 9 ] ) :  

I H~176 ( < . ,  
[Ho, a < r < b .  

( 2 . 3 )  

Here, H 0 is the strength of the magnetic field in the crust; 5 is the depth of penetration of 
the melt by the field (the width of the skin layer); J0 is a zeroth-order Bessel function of 
the first kind. Insertion of (2.2) and (2.3) into (2.1) gives us the relationship between 
the heat flux generated in the melt Q(r) and the strength of the magnetic field H0: 

Q(r) = z-~(d4a6)2[Hol2lg(a/6)12~(r). 

The d i m e n s i o n l e s s  f u n c t i o n s  g ( a / 6 )  and ~(r) a r e  d e t e r m i n e d  by t h e  e x p r e s s i o n s  

(2.4) 

g(a/6) = ]1( ]/'~iia/6)/Jo( l/-~za/6), 

II]1 ( ] / '~r /6) / I1  (]fr~a/~) t 2, O <  r < a, 
q~(r)=~O, a < r < b ,  

where J1 is a first-order Bessel function of the first kind. In the case 6/a << i, the Bessel 
function ratio can be approximated by the exponential relation 

lexp [2 (r -- a)/6], 0 < r < a, 

~(r) ~ [0, a<r<b. 

It follows from Eq. {2.4) that calculation of the heat source Q(r) reduces to calcula- 
tion of the strength of the magnetic field H 0 as a function of the parameters of the HF unit 
for CCIM (working frequency, number of turns of the induction coil, voltages on the coil, 
etc.). 

The electromotive force in one turn of the solenoid in Fig. 1 

~1=  Z ( o ) I ,  (2.5) 
(Z i s  t h e  impedance  o f  t h e  t u r n ;  I i s  t h e  c u r r e n t  in  t h e  s o l e n o i d ;  m i s  t h e  a n g u l a r  f r e q u e n c y ) .  
I n  a c c o r d a n c e  w i t h  [ 9 ] ,  

Z = --(io/c2)Le + (t + i)(b/~iai6i) [g(ajSi) ]-* ( 2 . 6 )  

H e r e ,  L e i s  t h e  e x t e r n a l  p a r t  o f  t h e  s e l f - i n d u c t a n c e  o f  t h e  s o l e n o i d  t u r n ;  b i s  t h e  r a d i u s  o f  
the solenoid (for simplicity, we assume that the latter coincides with the radius of the 
crucible); o i is the electrical conductivity of the solenoid; 6 i is the width of the skin 
layer in the solenoid; a i is the radius of the conductor used to make the solenoid. 

Insertion of (2.6) into (2.5) with allowance for the fact that the magnetic flux through 
the area of the solenoid turn 
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b 

�9 = (LJc) I = 2~ 5 H (r) rdr, 
0 

gives us the equation 

b 

~ l  = - -  2i~ (~/c) S H (r) rdr + (1 + i) (bI/aiai8 0 [g (adSO] -1. ( 2 .7  ) 
0 

b 

Having used (2.3) to calculate the integral S I t (r)rdr and having expressed the current 
0 

in t h e  s o l e n o i d  I t h r o u g h  t h e  s t r e n g t h  of  t h e  f i e l d  H 0 ( s e e  [9 ] )  I = (ch/4~N)H0, we can r e -  
duce ( 2 . 7 )  to  t h e  form 

~ , = - - i g ( m / c ) I t I .  b~- -a  2 + ( l - i )  aSg(a/5) 2~Sa-~i/Si  j , ( 2 . 8 )  

where h is the height of the solenoid and N is the number of turns in it. 

The electromotive force in a solenoid with N turns has the form ~ = N~ i. Taking this 
relation into account, we easily obtain the desired expression from (2.8) 

Ho = ( , c / ~ N )  ~ {b' - -  a ' + ( l  - -  i) [ aSgCa/5) bhS~ 

I n s e r t i o n  of  H 0 i n t o  ( 2 . 4 )  makes i t  p o s s i b l e  t o  d e s c r i b e  t h e  s o u r c e  f u n c t i o n  as  

Q(~ = Qo~(r), ( 2 . 9 )  

where 

Qo = (at2)(USlaNb2)~lg(a/8)12lt--(a/b)~+ ( l - - i ) { (aS /b2 )g (a~)_  [hSt~aNbatg(ajSi)]}l-2 (2.10) 

(U= ]~ I/~2 is the voltage on the solenoid). 

3. Solution of the Heat Conduction Equation. The thermal conductivity of the dielec- 
tric k is a function of temperature: it is considerably higher for the melt than for the 
crust. Approximation of I by a piecewise-linear function 

/s 0 < r < a ,  ( 3 . 1 )  
= [~, a < r < b  

makes it possible to reduce nonlinear problem (1.2)-(1.3) to the solution of two linear equa- 
tions of heat conduction - in the melt (0 < r < a) and in the slag crust (a < r < b). To 
combine the solutions, we used the condition at the phase boundary 

r = a, T = T t, ( 3 . 2 )  

where T I is the melting point of the dielectric. The value of a is found from the heat 
balance condition q+ = q_. 

If we integrate Eqs. (1.2) with the source (2.9) together with boundary conditions 
(1.3), (3.2) while allowing for Eq. (3.1), we can find the temperature distribution T(r) and 
heat flux q(r) in the dielectric: 

in the solid phase a < r < b 

T = T~-- ,(Tl--To)ln(r/a)[In(b~)] -1, q = (s ( 3 . 3 )  

in the melt 0 < r < a 

T = T~ + (Oo/%~)~ r -1 ~ (r) rdr dr~ q = (Oo/r) ~(r)rdr. ( 3 . 4 )  
o 

The maximum temperature at the center of the melt 
o ] 

T m =  T~ + (Qo/s ! r-1 ~ (r) rdr dr, 

The c o n d i t i o n  6 / a  << 1 i s  u s u a l l y  s a t i s f i e d  in  CCIM p r o c e s s e s .  

r~ ~ re + (Q0~14kr 
Thus 
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The distribution of temperature T(r) and heat flux q(r) in the dielectric is shown in 
Fig. 2. 

4. Heat Balance at the Phase Boundary. At r = a, Eqs. (3.3) and (3.4) determine the 
heat fluxes to the phase boundary from the direction of the melt q+ and the direction of the 
crust q_. The steady-state melting regime is characterized by the equality of these fluxes 

a 

?0 ~ (r) rdr = ~ (Tz -- To) [In (b/a)1-1. (4 .  1 ) 
0 

In  a c c o r d a n c e  w i t h  ( 2 . 1 0 ) ,  t h e  h e a t i n g  c a p a c i t y  Q0 depends  on t h e  p o s i t i o n  on t h e  phase  
boundary a. Insertion of (2.10) into (4.1) yields an equation which determines the position 
of the phase boundray in the steady-state thermal regime: 

(~2) ( U S ~ N b ~ )  21 g (a/8) I s I l - (alb) 2 + ( t - -  i) {(aS/b 2) g (alS) - 
a 

�9 [hSU2nNbaig (adS0]}1-2 ~ ~ (r) rdr  = ~ (Tz - -  To) [ln (b/a)] -1 .  
0 

I t  i s  more c o n v e n i e n t  t o  a n a l y z e  t h i s  e x p r e s s i o n  in  d i m e n s i o n l e s s  form 

g 2 =  2(~/a): in(l /x) ~(~)~d~ Ig(x/a)l-~[l --x= + ( 4 . 2 )  

Here ,  x = a / b  i s  t h e  d i m e n s i o n l e s s  c o o r d i n a t e  o f  t h e  phase  bounda ry  ( t h e  r a d i u s  o f  t h e  m e l t ) ;  
= 5 /b  i s  t h e  d i m e n s i o n l e s s  d e p t h  o f  p e n e t r a t i o n  o f  t h e  HF f i e l d  i n t o  t h e  m e l t ;  g = r / b  i s  

t h e  v a r i a b l e  o f  i n t e g r a t i o n ;  V = o~IR(U/N)[%(Tz - - T o ) ]  -~/2 i s  t h e  d i m e n s i o n l e s s  v o l t a g e  on t h e  
c o i l ;  ~ : ( a j b ) ( d J o ) l / ~  ~ : (h /bN)  a r e  p a r a m e t e r s .  The q u a n t i t y  a-2  can be i n t e r p r e t e d  as  t h e  
d i m e n s i o n l e s s  f r e q u e n c y  ( s i n c e  i t  can be r e p r e s e n t e d  in  t h e  form a -2 = e(2no)(b/c)2) ,  w h i l e  V 2 
can be r e g a r d e d  as  t h e  d i m e n s i o n l e s s  h e a t i n g  c a p a c i t y  in  t h e  m e l t .  E q u a t i o n  ( 4 . 2 )  makes i t  
p o s s i b l e  t o  c a l c u l a t e  t h e  s t e a d y - s t a t e  p o s i t i o n  o f  t h e  phase  b o u n d a r y  as  a f u n c t i o n  o f  f o u r  
p a r a m e t e r s  x = x (~ ,  ~, ~, Y).  

5. S t e a d y - S t a t e  CCIM Regimes .  F i g u r e  3 shows t h e  q u a l i t a t i v e  b e h a v i o r  o f  t h e  r i g h t  
s i d e  o f  Eq. ( 4 . 2 ) ,  d e s i g n a t e d  as f ( x ) .  The s o l u t i o n s  o f  Eq. ( 4 . 2 )  a r e  t h e  a b s c i s s a s  o f  t h e  
p o i n t s  o f  i n t e r s e c t i o n  o f  t h e  c u r v e  f ( x )  w i t h  t h e  l i n e  V 2. I t  i s  e v i d e n t  f rom t h e  f i g u r e  
t h a t  c e r t a i n  v a l u e s  o f  t h e  p a r a m e t e r  V > V* c o r r e s p o n d  to  t h e  two s t e a d y  s t a t e s  1 and 2 ( t h e  
s t a t i o n a r y  p o s i t i o n s  o f  t h e  phase  b o u n d a r y  xz and x2 ) .  At a c e r t a i n  c r i t i c a l  v a l u e  V = V, ,  
t h e  s t e a d y - s t a t e  s o l u t i o n s  merge (x~ = x 2 = x , ) ,  w h i l e  a t  Y < V, t h e r e  i s  a d i s c o n t i n u i t y  - 
s t e a d y - s t a t e  e q u a t i o n  ( 4 . 2 )  has  no s o l u t i o n .  

S tudy  o f  t h e  s t a b i l i t y  o f  s t e a d y  s t a t e s  r e q u i r e s  t h e  s o l u t i o n  o f  an u n s t e a d y  h e a t  con-  
d u c t i o n  e q u a t i o n .  Along w i t h  ( 1 . 1 ) ,  on t h e  phase  bounda ry  we impose t h e  c o n d i t i o n  r = a + 
s e x p ( ~ t ) , T s + m e x p ( ~ t ) =  Tz, where T s i s  t h e  s t e a d y - s t a t e  t e m p e r a t u r e ;  E and m a r e  t h e  a m p l i -  
t u d e s  o f  t h e  p e r t u r b a t i o n s  o f  t h e  s t e a d y - s t a t e  r a d i u s  o f  t h e  m e l t  and t h e  s t a t i o n a r y  p r o f i l e  
o f  t e m p e r a t u r e  in  t h e  d i e l e c t r i c ;  fi i s  a dec remen t  d e t e r m i n i n g  t h e  deve lopmen t  o f  t h e  p e r -  
t u r b a t i o n s  o v e r  t ime .  

At I~ l<<•  2 (where  ~ i s  t h e  d i f f u s i v i t y ) ,  we can r e s t r i c t  o u r s e l v e s  t o  a q u a s i s t e a d y  
a p p r o x i m a t i o n  and c a l c u l a t e  t h e  f l u x e s  q+, q_ in  ( 1 . 1 )  f rom t h e  s t e a d y - s t a t e  e q u a t i o n  ( 1 . 2 ) .  
I t  i s  known f rom t h e  t h e o r y  o f  t h e  b r a n c h i n g  of  dynamic s y s t e m s  [10] t h a t  I~1 = 0 a t  t h e  
p o i n t  o f  c o n f l u e n c e  o f  two s t e a d y - s t a t e  s o l u t i o n s .  I t  f o l l o w s  from t h i s  t h a t  t h e  q u a s i s t e a d y  
a p p r o x i m a t i o n  i s  v a l i d  n e a r  t h e  s t a b i l i t y  b o u n d a r y  ( a t  x = x , ,  when I~1 § 0 ) .  Here ,  t h e  
p rob lem i s  r e d u c e d  t o  t h e  a n a l y s i s  o f  a s i n g l e  e q u a t i o n  ( 1 . 1 ~ ,  f rom which i t  f o l l o w s  t h a t  a 
s t a b l e  s t e a d y  s t a t e  w i l l  e x i s t  unde r  t h e  c o n d i t i o n  

d q + / d a < d q . / d a .  ( 5 . 1 )  

The o p p o s i t e  i n e q u a l i t y  c o r r e s p o n d s  t o  t h e  u n s t a b l e  s t a t e .  R e l a t i o n  ( 5 . 1 )  i s  v a l i d  f o r  a 
p o s i t i v e  v a l u e  o f  t h e  d e r i v a t i v e  d f / d x  ( t h e  o p p o s i t e  r e l a t i o n  i s  v a l i d  f o r  a n e g a t i v e  v a l u e ) .  
I t  i s  e v i d e n t  f rom F i g .  3 t h a t  d f / d x  < 0 f o r  x 1 z x~ and d f / d x  > 0 f o r  x 2 = x .... Thus ,  t h e  
s t e a d y  s t a t e s  t o  t h e  l e f t  o f  t h e  c r i t i c a l  p o i n t  (x ~ x , )  a r e  u n s t a b l e ;  a c c o r d i n g l y ,  x ,  < x < 
i is the region of stable steady states. 

In the study of stability, the quasisteady approximation rests (as noted above) on the 
smallness of [~] near the stability boundary. For a similar reason, the study of the 
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stability of steady-state solutions in the theory of thermal explosions can be restricted 
to consideration of the regular regime [Ii]. 

The quantity x I can be regarded as the critical radius of the starting melt; if x < x l 
at the beginning of melting, then melting of the dielectric will not occur at the voltage on 
the coil V - the starting melt will be frozen; at x > x l, a fusion wave propagates in the 
dielectric and, after the elapse of a certain period of time, the melt-solid system enters 
the stable steady state 2. This state corresponds to the melt radius x 2. 

A reduction in the voltage on the coil is accompanied by descent of the line V2 in Fig. 
2 and an increase in the width of the solid phase [a smooth increase in the quantity (i - 
x 2) with a decrease in V signifies directional crystallization of the melt in the radial 
direction]. The critical voltage V = V, corresponds to the minimum melt radius x,. A fur- 
ther decrease in the voltage on the coil results in spontaneous crystallization of the melt. 

Figures 4 and 5 show dependences of the critical values of V, and x, on the parameter 
calculated from Eq. (4.2). Curves 1-3 in Fig. 4 are for the following values of the param- 

eters $ and 7: i) ~ = i, 7 = 0.2; 2) ~ = I0, ~ = i; 3) ~ = I0, ~ = 0.2 (values typical of 
the CCIM of ~ oxides); the value of x, is independent of $ and ~. It can be seen from the 
figures that the relations V,(~) and x,(~) are nonmonotonic. The appearance of the extrema 
can be explained as follows. The total heating capacity is the product of the volume in 
which heat is released and the mean heat flux. With a decrease in frequency (an increase 
in ~), the first of these factors increases together with 6, while the second decreases - 
since there is a decrease in the density of the eddy currents induced in the melt by the 
magnetic field of the coil. At ~ i  (6~b), heat is liberated almost uniformly throughout 
the melt; the curve x,(~) is saturated - the critical radius of the melt is independent of 
frequency. 

In the region ~i, we have the relation 

I W/2~g (~/~)I << I x ,g  (z,/~)l, ( 5 . 2 )  

which is connected with the smallness (in the high-frequency region) of the active resis- 
tance of the coil compared to its inductive resistance. It follows from (4.2) and (5.2) 
that at ~<i the critical value V.0, is a function only of the one parameter ~. In the low- 
frequency region (at ~ ~ i), relation (2.5) is not satisfied; it is necessary to consider 
the effect of the active resistance of the coil and calculate the critical value V, as 
V, = V,(~, ~, ~). It is evident from Fig. 4 that at ~ ~ i, V, increases with a decrease 
in ~ and an increase in y. 

In the case of CCIM of oxides, the values ~ ~ 0.05-0.1 are realized at frequencies of 
1-5 MHz. At N = I, b = 0.i m, ~ = 4 W/(m.K), Ts - T o = 2500 K, the minimum voltage on the 
coil in the indicated range of ~ is U, ~ 1 kV. It is evident from Fig. 5 that at ~ = 0.05- 
0.i, the relation (I - x,) ~ 1 is valid. This means that at V < V, the melt becomes ther- 
mally unstable with a thin layer of crust. In other words, it is not possible to crystallize 
the dielectric in the radial direction by smoothly reducing the heat liberation in the melt 
(such as by smoothly reducing the voltage on the coil) in the parameter region ~0.1. Max- 
imum thermal stability of the melt is achieved at ~ = 0.3-0.5 [the extremum of the curve 
x,(~) in Fig. 5]. Up to 40% of the volume of the melt can be crystallized by directional 
crystallization in this range of ~. 

It should be noted that the calculated values of u and x, are estimates of the lower 
bound, since the infinite-melt model shown in Fig. 1 does not account for boundary effects 
[heat loss from the melt zone in the axial direction (which occurs in actual CCIM process), 
nonuniformity of the magnetic field at the ends of the coil, etc.]. 
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A charge in the form of powder with a fineness of about i0 ~m is usually used as the 
charge in CCIM processes. The melting of the powder differs significantly from the melting 
of a monolithic (nonporous) dielectric. The author of [12] explained features of CCIM at 
the stage of fusion-wave propagation that are connected with capillary spreading of the melt 
in the pores of the solid phase of the dielectric: the melt impregnates the solid phase and 
crystallizes in it; the crystallizing layer then undergoes slow through melting. This pat- 
tern is subsequently repeated. The capillary spreading phenomen also has an effect on the 
steady-state CCIM regime. In this case, the following situation is possible. After the 
phase boundary occupies the position x 2 (the stable steady state 2 in Fig. 3), the melt im- 
pregnates the solid phase and crystallizes. The thermal conductivity of the crust suddenly 
increases, since the thermal conductivity of the crystallized layer is considerably greater 
than that of the powder charge. The jump in conductivity corresponds to a sharp reduction 
in V. In the case V > V,, the phase boundary occupies the new steady position x, < x < x2; 
at V < V,, a crystallization wave propagates through the dielectric from the periphery to the 
center. 

We thank A. P. Aldushina, V. V. Grachev, I. A. Kanaev, and V. A. Knyazik for their 
fruitful discussion of the present study. 
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